
A New Equivalence Checker for 
Demonstrating Correctness of Synthesis and 
Generation of Safety-Critical Software

Eui-Sub Kim, Junbeom Yoo

Dependable Software Laboratory

KONKUK University

2016.05.27

ISET 2016
2016.05.26~27

Deajeon



2

Introduction

• Purpose : New Equivalence Checker Development

– for demonstrating correctness of synthesis and generation of safety-

critical Software

• We are developing the equivalence checking engine from the 

scratch.

– The checker can directly verify the FBD program 

• without any translation process and any assistance of other checking 

engine.

• Q. Why equivalence checking is necessary?



3

Introduction

• A. Many Transformations

– The initial design usually undergo a 

number of transformations such as 

program translation, synthesis and P&R.

– How can you prove that the 

translation/optimization tools 

correctly translate the original 

program into another one?

– Especially when the tools are used in 

development of safety critical software, 

you have to verify the tool! to prevent 

unintended accident.



4

Representative Techniques

• 1. Simulation

– Most widely used technique

– It requires test vectors and tiring process (re-simulation and comparison)

– It is impossible to check all of input vector.

• It should check all possible input vectors (2^input bits).

• Simulating all possible input-output pairs is Co-NPHard. 

• 2. Equivalence Checking

– Formal Verification technique

• Formal verification is a type of static analysis that applies mathematical 

techniques to rigorously prove that a design functions correctly. 

– It formally prove that two programs exhibit exactly the same 

behavior.

– This verification technique can be performed quickly and without the 

need for test vectors.



5

Platform Change from PLC to FPGA

• Target:

– RPS (Reactor Protection System)

– Safety critical component of I&C in the Nuclear power plants

• Recently,

– FPGA has received much attention from nuclear industry

• Increasing maintenance cost

• CCF(Common Cause Fault) problem

• In-depth strategy for security



6

• We developed an integrated 

development framework

• NuDE  .

• Each process needs specific 

tools provided by the FPGA 

vendors. 

– Nuclear regulation 

authorities require more 

considerate demonstration 

of the correctness of the 

mechanical tools,

– even if the FPGA industry 

have acknowledged them 

empirically as correct and 

safe processes and tools.



7

Logic Synthesis in FPGA Development

• In theory, a logic synthesis tool guarantees that the first netlist is 

logically equivalent to the RTL source code. 

• In practice, software can have bugs !!

– It would be a major risk to assume that all steps from RTL through 

the final tape-out netlist have been performed without error.

• Therefore, a verification for synthesis tool and process is needed 

to check the logical equivalence.



8

Development of the EC tool from the scratch

• Industrial equivalence checking tools

– Imitated application and royalty

– No applicable LEC for Synopsys Synplify Pro (in Actel Libero IDE)

• In this case, we need to develop a customized or new LEC



9

New Equivalence Checker

• We are developing the equivalence checking engine from the 

scratch.

– We can now perform combinational equivalence checking against two 

version of FBD programs (an original FBD vs. a modified version FBD). 

– It can directly verify the FBD program without any translation process 

and any assistance of other checking engine.

– Equivalence Checking Engine

• We will check the combination ‘Actel Libero IDE’ with ‘Synopsys Synplify Pro’ 

synthesizer, which is the combination of the project we are working with.

• We can save the royalty and have our EC core engine.



10

In detail

• Functional Equivalence Checking

– two programs are equivalent if their representations are identical.

• Using ROBDD (Reduced Ordered Binary Decision Diagram)

• Branch based Backward tracking method

• Process

– Input  two FBD programs

– Translation  intermediate format for BDD

– Generation  BDD 

– Comparison  both BDD

– Result  “equivalent” or “counter example”

FBD 1

FBD 2

Intermediate 
format

Intermediate 
format

ROBDD

ROBDD

EC engine

Equivalent

Counter 
example



11

Conclusion & Future work

• Conclusion

– New combinational equivalence checker

– The first target is FBD program, 

– We developed the equivalence checking engine from the scratch.

• Future work

• Function:

– Sequential Equivalence Cheeking of 

FBD program

• Various Input programs:

– Verilog

– VHDL

– Gate-level netlist (EDIF)

• Graphic:

– Visualization of counter example

– User friendly GUI

• Evaluation & Improvement !!

– Speed

– Memory usage

• Model checking



12

Future Work

• We are now planning to 

extend the tool can be 

used in anywhere in 

NuDE.

• If all verifications succeed, 

we can say that the final 

software will operate 

exactly as we intended.


